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Abstract —One- and two-stage 12-GHz-band low-noise GaAs monolithic
amplifiers have been developed for use in direct broadcasting satellite
(DBS) receivers. The one-stage amplifier provides a less than 2.5-dB noise
figure with more than 9.5-dB associated gain in the 11.7-12.7-GHz band.
In the same frequency band, the two-stage amplifier has a less than 2.8-dB
noise figure with more than 16-dB associated gain. A 0.5-pm gate closely
spaced electrode FET with an ion-implanted active layer is employed in the
amplifier in order to achieve a low-noise figure without reducing reproduci-
bility. The chip size is 1 mm X 0.9 mm for the one-stage amplifier, and 1.5
mm X 0.9 mm for the two-stage amplifier.

I. INTRODUCTION

ECENT ADVANCES in GaAs technology have made

monolithic microwave integrated circuits (MMIC’s)
more practical. Promising applications for this technology
include inexpensive receiver front ends for direct broad-
casting satellite (DBS) systems [1], [2]. This paper describes
design considerations, the fabrication process, and perfor-
mances for newly developed one- and two-stage 12-GHz-
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band low-noise GaAs monolithic amplifiers for use in DBS
receivers. For MMIC’s used in DBS receivers, reproducibil-
ity improvement and chip size reduction are essential in
order to achieve low cost. A low noise figure is also re-
quired for the amplifiers, because it determines the overall
receiver noise figure. In this work, most efforts were focused
on achieving these requirements. ‘

1I. FET DEsiGN

The main reason for poor MMIC reproducibility is the
variation in FET characteristics caused by nonuniformity
of active layers. To improve uniformity, an ion-implanta-
tion technique was. employed to form the active layers,
although epitaxially grown active layers are believed to be
better for low-noise FET’s. In conventional MMIC’s, a
recessed gate structure has been widely used for reducing
unfavorable source resistance [5]. The gate-recessing pro-
cess, however, degrades uniformity of active layers. To
overcome this difficulty, a closely spaced electrode (CSE)
FET structure [3], [4] was introduced. In the CSE FET,
source-gate and drain—-gate spacings are shortened to 0.5
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Fig. 1. -CSE FET cross-sectional SEM photograph.

Fig. 2. FET electrode pattern.

Fig. 3. FET static characteristics.

pm, so that source resistance can be reduced sufficiently
without recessing the gate. Fig. 1 is a cross-sectional SEM
photograph of the FET. The gate was formed 0.5 pm long
by side-etching from a 1.5-pm-long photoresist mask. The
mask was also utilized to form ohmic electrodes. Because
the ohmic electrodes are formed by lifting-off technique,
source—drain spacing becomes 1.5 um long and the gate is
formed. at the center of the spacing. Therefore, the gate and
the ohmic electrodes were self-aligned.

Although a bar-shaped gate pattern is usually used in
discrete low-noise FET’s [5], an interdigital electrode pat-
tern has been employed because this pattern uses less
space. As shown in Fig. 2, the FET has four gate fingers.
Each finger is 70 um long. The total gate width is 280 pm.
An FET threshold voltage V, has been chosen as —1.7 V.
Fig. 3 shows static characteristics for the FET. The
saturated drain current 7, is 60 mA. Observed transcon-
ductance g,, at a 10-mA drain current is 30 mS, which
corresponds to 105 mS/mm. Gate breakdown voltage V,,,
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Fig. 5. - Histograms showing threshold voltage distributions for CSE
FET and deeply recessed epi-FET. (a) Ion-implanted wafer. (b) Epi-
taxial wafer.

is —8.5 V. Source resistance R, and source-to-gate capaci-
tance C,, at 0-V bias voltage are 4 Q and 0.23 pF, respec-
tively. Microwave characteristics were measured at 12 GHz.
Results are shown in Fig. 4. The minimum noise figure
NF,,,, and associated gain Ga at a 10-mA drain current are
1.7 and 8.8 dB, respectively. Maximum available gain
(MAG) at a 30-mA drain current is 11.5 dB. These char-
acteristics are almost the same as for the deeply recessed
epi-FET [5].

In order to study orientation effects [6], FET’s oriented
in both [011] and [011], crystal directions were fabricated
and measured. However, both for static and microwave
characteristics, no significant difference was observed.

In Fig. 5, histograms showing ¥; distributions on a wafer
for the CSE FET and the ‘deeply recessed epi-FET are
comparatively presented. Averaged threshold voltage 7,
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Fig. 6. One-stage amplifier chip photograph.
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Fig. 7. One-stage amplifier equivalent circuit.

and standard deviation o, for the CSE FET are —1.73 and
0.14 V, respectively. For the epi-FET, they are —2.24 and
0.67 V, respectively. A sample variation coefficient defined
by ¢, /V,, which is a measure for achieving uniformity, is
0.08 for the CSE FET and 0.30 for the epi-FET. Therefore,

the uniformity in the CSE FET is improved by a factor of

approximately four compared with the epi-FET.

When ion-implanting conditions are fixed, reproduci-
bility in FET threshold voltages for two wafers sliced from
different ingots is rather poor, because physical parame-
ters, especially Cr concentration, for each ingot are greatly
different. Also, in one ingot, the Cr concentration at the
top and bottom positions are considerably different, be-
cause it varies along the crystal growth direction. There-
fore, the implanting conditions have been experimentally
determined by test implantation into several wafers sam-
pled from an ingot. By this procedure, the desired FET
threshold voltage can be realized with good reproducibility
for all the remaining wafers in the ingot.

II1.

Fig. 6 shows a chip photograph for the one-stage ampli-
fier. Fig. 7 shows its equivalent circuit. The chip size is 1
mm X 0.9 mm, and the wafer thickness is 150 um. One-sec-
tion parallel and series microstrip lines are used for match-
ing circuits. These lines can also be utilized as dc-bias feed
lines. This arrangement allows a great savings in the chip
area. To retain a high Q value, a 2.5-um metallization
thickness was chosen. The measured Q value for a 50-um-
wide line, which was mostly used in the amplifier, is
30 ~ 40 at 12 GHz. This value is somewhat lower than the
value estimated from data described in [7]. As shown, the
microstrip lines were folded in order to reduce the chip
size. To avoid parasitic couplings, the spacings between
adjacent lines were designed to be as large as possible.

Capacitors are of the MIM type, where dielectric material
is SiO,, with a relative dielectric coefficient €, of 4.8.

AMPLIFIER DESIGN
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Fig. 8. Cascaded version of the two-stage amplifier chip photograph.

. Fig. 9. Modified version of the two-stage amplifier chip photograph.
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Fig. 10. Modified version of the two-stage amplifier equivalent circuit.
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Measured Q values for a 1.42-pF capacitor are 31.3 at 2.5
GHz, 28.8 at 5.4 GHz, and 27.1 at 8.6 GHz. For a 4.2-pF
capacitor, they are 22.6 at 2.1 GHz, 17.2 at 5.2 GHz, and
17.0 at 8.4 GHz. The measurement was carried out by
employing a resonant method [8]. All capacitors are used
as dc-block or RF-short capacitors. Therefore, capacitance
has been chosen larger than 2 pF and thickness control for
SiO, film is not critical. ’

By using measured S-parameters for a discrete FET,
element values in a FET equivalent circuit were derived.
Based on these values, the amplifier circuit parameters
were optimized by a CAD program. In the desired
frequency band, which is from 11.7 to 12.7 GHz, more

‘than a 9-dB gain was predicted.

There are two different versions of the two-stage ampli-
fier. One is constructed through a cascaded connection
between two identical one-stage amplifiers, as shown in
Fig. 8. Therefore, the chip is double sized at 2 mm x0.9
mm. In this version, the impedance locus from the first- to
second-stage FET passes through a 50-Q point. This route
is obviously redundant. Therefore, chip size reduction can
be expected by modifying the interstage matching circuit,
as the route becomes shorter. In the other version, the
modification was carried out by using the CAD program.
A chip photograph and its equivalent circuit for the mod-
ified version are shown in Fig. 9 and Fig. 10, respectively.
As shown, the chip size is reduced to 1.5 mmX0.9 mm,
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Fig. 11. Comparison between calculated and measured characteristics in

modified version of the two-stage amplifier.
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Fig. 12 Circuit elements cross-sectional view and equivalent circuit.

although the matching element sensitivity becomes slightly
higher. Gate-bias voltage for the second-stage FET is sup-
plied through a resistor. The resistance was chosen larger
than 5 kQ to prevent causing dissipation loss.

Fig. 11 shows a comparison between calculated and
measured characteristics for gain and VSWR’s in the mod-
ified version two-stage amplifier. As shown, quantitative
designability is poor, although qualitative tendencies agree
well. The poor designability is caused by inaccuracy in
FET S-parameter measurement and by parasitic couplings
between matching elements. Therefore, in actual design,
the matching circuit pattern layout, including noise-
matched operation, has been determined by experimental
modification from original gain-matched CAD data. This
layout modification can be accomplished by changing only
one photomask level at the final fabrication process. Usu-
ally, desired characteristics are obtained after one to two
modifications.

IV. FABRICATION PROCESS

Fig. 12 shows a cross-sectional view for various circuit
elements together with their equivalent circuit. A Cr-doped
semi-insulating HB-grown GaAs wafer is selectively im-
planted with *Si* to form FET active layers. Resistive
layers are formed at the same time. Implanting conditions
for realizing V. = ~1.7 V are a 70-keV acceleration energy
and a 3.2x10" cm™? dose. The wafer is then annealed
with a 0.2-pm-thick CVD-SiO, cap at 800° C for 20 min in
a H, ambient. Donor carrier concentration N, and drift
mobility p, profiles in the ion-implanted layer are shown
in Fig. 13. They were measured by using a 250-pm-long
gate FET [9]. The peak carrier concentration is 2.7 X 10"’
cm™ 3 and the mobility is about 3500 cm?/V -s.
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Fig. 13. Carrier concentration and drift mobility profiles

Al, which is used as FET gates and capacitor lower
electrodes, is deposited by vacuum evaporation to 0.4-pm
thickness and etched to form the gates. Ohmic electrodes
for the FET’s and the resistors are then formed by lifting
off a AuGe-Ni film and alloying it at 400° C. In GaAs IC
fabrication, the gate-forming process is usually most dif-
ficult. In this process, however, it is very simple because the
gates and the ohmic electrodes are self-aligned, as previ-
ously mentioned. After ohmic electrodes are formed, the Al
is gain etched to form the capacitors lower electrodes.
Then, SiO, for FET passivation and capacitor dielectric
material is chemically vapor-deposited to a 0.2-um thick-
ness and ctched to form contact vias. Next, Ti for the
electroplating feeder is evaporated onto the whole wafer.
Microstrip lines and capacitor upper electrodes are then
formed by Ti-Pt-Au liftoff and thickened to 2.5 pm by
selective Au plating. Topside processing is completed by
etching off the feed metal Ti. The wafer is thinned and the
rear is metallized by AuGe-Ni—Au evaporation, Amplifier
chips can be obtained by cleaving the wafer,

V. MICROWAVE PERFORMANCE

Amplifier chips were chosen for microwave evaluation
on the basis of visual inspection and dc testing. The
selected chips were mounted on Au-plated copper carriers
using AuSn solder. The carriers were then mounted on test
fixtures and tested in a 50-8 system. Needless to say, no
external bias tee is necessary, because bias circuits are
included on the chips.

Fig. 14 shows gain and noise figure characteristics for
the one-stage amplifier. In the 11.7-12.7-GHz band, which
is the desired frequency band, the amplifier provides a less
than 2.5-dB noise figure with more than 9.5-dB associated
gain. The maximum gain and the minimum noise figure in
the band are 12 and 2.2 dB, respectively. Bias conditions
are 2.5-V drain voltage and 10-mA drain current. Although
the gain can be increased by increasing the drain voltage,
as well as the drain current, when this increase is made, the
noise figure is degraded. The noise figure was measured at
70-MHz IF frequency using a mixer. Input and output
VSWR’s are less than 3, and less than 2.5 in the desired
frequency band, respectively.
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Fig. 14. One-stage amplifier gain and noise-figure characteristics.
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Fig. 16. Modified version of the two-stage amplifier gain and noise-

figure characteristics.

Gain and noise figure characteristics for the cascaded
version two-stage amplifier are shown in Fig. 15. More
than a 20-dB gain with a 24-dB maximum, and less than a
3-dB noise figure with 2.6-dB minimum are obtained in the
desired band. The input VSWR is less than 4, and the
output VSWR is less than 2.5. These characteristics mostly
agree with the value predicted from the one-stage ampli-
fier, because this version is constructed simply by the
cascaded connection. For two-stage amplifiers, the drain
current for the second-stage FET is set at 15 mA.

Fig. 16 shows gain and noise figure characteristics for
the modified version two-stage amplifier. In the desired
frequency band, the amplifier has less than a 2.8-dB noise
figure with more than a 16-dB associated gain. Although
the gain is degraded, compared with the cascaded version,
the noise figure is improved. Input and output impedances
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Fig. 17. Modified version of the two-stage amplifier input and output
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Fig. 18. Modified version of the two-stage amplifier temperature char-
acteristics.

for this amplifier are shown in Fig. 17. In the figure,
reference planes are chosen at cleaved edges of the ampli-
fier chip. Less than 2.5 input VSWR and less than 2 output
VSWR are obtained in the 11.7-12.7-GHz band.

Fig. 18 shows gain and noise figure versus ambient
temperature characteristics at a 12-GHz frequency for the
modified version two-stage amplifier. In the measurement,
drain currents, which varied with the ambient temperature,
were set to standard values at room temperature. At —70°
C, the noise figure is 1.8 dB, with a 20-dB associated gain.
While at 100° C, the noise figure is 3.7 dB with a 16.9-dB
associated gain. Between these temperatures, the gain and
noise figure are changed linearly according to changes in
ambient temperature. These tendencies are almost the same
for frequencies other than 12 GHz. Therefore, frequency
characteristics both for the gain and the noise figure are
shifted in parallel when varying the ambient temperature.

VL

The design considerations, fabrication process, and per-
formances for newly developed one- and two-stage
12GHz-band low-noise GaAs monolithic amplifiers for use
in DBS receivers have been described. By introducing the
ion-implanted CSE FET, both a low noise figure and im-

CONCLUSION
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proved uniformity, which implies high reproducibility, can
be achieved. Chip size reduction is also accomplished by
employing compact matching circuits. The measured mi-
crowave performances are well within the acceptable range
for DBS receivers. Although the investigation on yields has
not been sufficiently carried out, it is believed that this
approach has the potential to obtain good results. This
work has made a cost-effective one-chip front end for DBS
systems more realistic.
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